
www.zylin.com

eCos introduction

Øyvind Harboe, General Manager, Zylin AS



www.zylin.com

eCos overview

Not Linux, does not require MMU

Does not target flash MCUs per 2009. 2010-12?

More data/code memory than e.g. FreeRTOS

32 bit MCUs. Requires 10-100s of kBytes of 
memory, uCLinux megabytes of RAM

A raft of deeply embedded operating systems 
out there

eCos is open source, free(as in speech, not beer) 
and widely deployed(growing)



www.zylin.com

eCos best fit

Enough RAM/flash (a few megabytes)

Normal programming model, e.g. POSIX API

Drivers interaction must be written

Licensing is unproblematic with GPL + exception

Closed source requirements

Real time requirements

Smaller applications

Simple stacks required(no USB host, TCP/IP not 
in the wild, etc.)



www.zylin.com

GCC toolchain

eCos only supports the GCC toolchain

GCC is the “gold standard” in compilers – a must 
have

32 bit programming model

Open source and free

Binaries of GCC freely available for any mature 
CPU

It is possible to build GCC yourself, but it is not 
for the faint of heart



www.zylin.com

GCC C/C++ libraries

All standard C functions available

C++ STL(including iostreams & pthread 
exceptions) supported

Many POSIX C functions available(e.g. sockets, 
fileio)

C/C++ skills from PC development reusable with 
eCos HAL in place



www.zylin.com

GDB debugger

GDB is the “GCC debugger”

GDB is a “low-level library”, not a GUI

Various graphical frontends exist

Insight

DDD

Eclipse CDT



www.zylin.com

Get a JTAG/hardware debugger

As little as 100EUR

Pay peanuts get monkeys

2000-4000 EUR for new targets

Zylin provides the Goldilocks JTAG debugger: 
ZY1000

Excellent hardware debugger. Oriented towards 
more mature targets.



www.zylin.com

eCos HALs 

HAL = BSP

Supports “all” deeply embedded CPUs

Most importantly requires a GCC toolchain

A HAL for a CPU + PCB means writing a slight 
variant on existing HAL. It is not hard. Ca. 
1000-2000 lines of code + drivers. Experience 
helps a lot.

Best practice: get hardware with an eCos HAL, 
alternatively get help from an experienced 
eCos engineer for the first mile

After the HAL it's all downhill



www.zylin.com

Drivers

eCos comes with many drivers

In addition to standard drivers, rolling your own 
is not hard

No need for a driver for your hardware if your 
application accesses the hardware directly



www.zylin.com

eCos modules

TCP/IP – web servers

USB 

Serial ports

Timers

Compression

GUI (FLTK)

Just about anything you can think of and more

POSIX code compiles with few if any 
modifications to code



www.zylin.com

eCos kernel

All RTOS functions

Threads

Mutex

Interrupts

SMP (symmetric multiprocessing)

etc.



www.zylin.com

eCos fileio

JFFS2 (flash filing system)

ROM

FAT

Roll your own(e.g. /tftp).

Naming inspired by Linux(mount points and 
forward slashes)

etc.



www.zylin.com

eCos synthetic target

Non-sequitor...

eCos can run in thread under Linux

Useful for testing/development



www.zylin.com

RedBoot bootloader

Not for the end-user

Geek command line for uploading new 
applications to flash/RAM

Includes GDB communication protocol support

Definitely useful when familiarizing oneself with 
eCos 

Useful when testing new target & flash drivers



www.zylin.com

Custom bootloader

Likely you’re better off writing your own

RedBoot is nothing more than a small eCos app

A typical case for a complete custom bootloader; 
~500 lines of code.

eCos provides all the bootloader guts, you just 
have to piece it together in a way that makes 
sense for your application

Add production features?

Self tests?

User friendly firmware upgrades?



www.zylin.com

Install eCos

Install Cygwin or Linux

Install eCos tools

Fetch latest eCos source from CVS repository

Ignore eCos releases, use CVS HEAD

eCos web pages are dated. The project is most 
definitely alive.



www.zylin.com

eCos development flow

Enable relevant options and modules using 
ecosconfig

ecosconfig GUI is preferred by some

Build eCos – happens rarely

Link eCos lib w/your target using your own 
makefiles

If you need to modify eCos, consider making a 
separate eCos repository that you keep in your 
own version control system



www.zylin.com

Writing custom HAL

http://www.zylin.com/ecoshal.html

Put your HAL in your own repository

Stored in your version control system

Take a snapshot of the official eCos repository 
and upgrade as needed

Commit toolchain binaries to version control



www.zylin.com

Zylin AS
Embedded services

Øyvind Harboe, General Manager, Zylin AS


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

